Synaptic vesicle chips to assay botulinum neurotoxins.

نویسندگان

  • Géraldine Ferracci
  • Raymond Miquelis
  • Shunji Kozaki
  • Michael Seagar
  • Christian Lévêque
چکیده

BoNTs (botulinum neurotoxins), considered to be the most toxic of all biological substances, inhibit neurotransmission through proteolytic cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins [VAMP (vesicle-associated membrane protein, or synaptobrevin), SNAP-25 (25 kDa synaptosome-associated protein) or syntaxin]. Expansion in the use of BoNTs as therapeutic and cosmetic agents, and the potential threat they constitute as biological weapons, underlines the need for rapid and sensitive in vitro assays. Here, we present new automatized bioassays to detect VAMP cleavage by BoNT/B and F. Western blotting and SPR (surface plasmon resonance) methods revealed that BoNT/B and F totally cleave their substrate on immunoisolated SVs (synaptic vesicles). Real-time monitoring of the immunocapture of native SVs from crude lysates on SPR sensor chips enabled the detection of picogram amounts of different SV proteins. Pre-incubation of a membrane fraction containing SVs with BoNT specifically inhibited capture by anti-VAMP antibodies, and amounts as low as 0.1 pg of BoNT/B were detected. This automated SPR assay is approx. 200 times more sensitive, and 25 times more rapid, than the in vivo BoNT/B test currently used. Moreover, the method can be performed using a few thousand cultured neurons and constitutes a new screening assay for inhibitors. Our data indicate that native VAMP is an optimal substrate for in vitro BoNT assays that can be monitored by SPR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Botulinum Neurotoxin a Blocks Synaptic Vesicle Exocytosis but Not Endocytosis at the Nerve Terminal

The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest v...

متن کامل

کلونینگ، بیان و تخلیص پروتئین SNAP-25

Background & Objectives:Clostridial neurotoxin inhibits neurotransmitter release by selective and specific intracellular proteolysis of synaptosomal associated protein of 25KDa (SNAP-25), synaptobrevin/VAMP-2 and syntaxin. SNAP-25 is one of the components that forms docking complex in synaptic ends. This protein is subtrate for botulinum neurotoxins types A,C, and E. Each of these toxin serotyp...

متن کامل

Protein Domain Analysis of C. botulinum Type A Neurotoxin and Its Relationship with Other Botulinum Serotypes

Botulinum neurotoxins (BoNTs) are highly potent poisons produced by seven serotypes of Clostridium botulinum. The mechanism of neurotoxin action is a multistep process which leads to the cleavage of one of three different SNARE proteins essential for synaptic vesicle fusion and transmission of the nerve signals to muscles: synaptobrevin, syntaxin, or SNAP-25. In order to understand the precise ...

متن کامل

Applications of Rat Brain Synaptic Vesicle Proteins for Sensitive and Specific Detection of Botulinum Neurotoxins

We propose here the application of synaptic vesicle proteins isolated from rat brain as a sole substrate for the specific endoproteinase activities of all seven serotypes of Botulinum Neurotoxin (BoNT/A to G). In this study, we used these proteins for evaluating endopeptidase and receptor binding activity for detecting BoNT/A by western blot and surface plasmon resonance with 6.25 pM and 0.22 f...

متن کامل

Botulinum Neurotoxin D Uses Synaptic Vesicle Protein SV2 and Gangliosides as Receptors

Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 391 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2005